Part Number Hot Search : 
XC4000XL 25001 1208B 2N441001 CD4687 XN1118 SKI06073 M2432
Product Description
Full Text Search
 

To Download EFM32TG110F32-QFN24 Datasheet File

  If you can't view the Datasheet, Please click here to try to view without PDF Reader .  
 
 


  Datasheet File OCR Text:
  ...the world's most energy friendly microcontrollers 2015-03-06 - efm32tg110fxx - d0013_rev1.40 1 www.silabs.com efm32tg110 datasheet f32/f16/f8/f4 ? arm cortex-m3 cpu platform ? high performance 32-bit processor @ up to 32 mhz ? wake-up interrupt controller ? flexible energy management system ? 20 na @ 3 v shutoff mode ? 0.6 a @ 3 v stop mode, including power-on reset, brown-out detector, ram and cpu retention ? 1.0 a @ 3 v deep sleep mode, including rtc with 32.768 khz oscillator, power-on reset, brown-out detector, ram and cpu retention ? 51 a/mhz @ 3 v sleep mode ? 150 a/mhz @ 3 v run mode, with code executed from flash ? 32/16/8/4 kb flash ? 4/4/2/2 kb ram ? 17 general purpose i/o pins ? configurable push-pull, open-drain, pull-up/down, input filter, drive strength ? configurable peripheral i/o locations ? 11 asynchronous external interrupts ? output state retention and wake-up from shutoff mode ? 8 channel dma controller ? 8 channel peripheral reflex system (prs) for autonomous in- ter-peripheral signaling ? hardware aes with 128/256-bit keys in 54/75 cycles ? timers/counters ? 2 16-bit timer/counter ? 23 compare/capture/pwm channels ? 16-bit low energy timer ? 1 24-bit real-time counter ? 1 16 -bit pulse counter ? watchdog timer with dedicated rc oscillator @ 50 na ? communication interfaces ? 2 universal synchronous/asynchronous receiv- er/transmitter ? uart/spi/smartcard (iso 7816) /irda /i2s ? triple buffered full/half-duplex operation ? low energy uart ? autonomous operation with dma in deep sleep mode ? i 2 c interface with smbus support ? address recognition in stop mode ? ultra low power precision analog peripherals ? 12-bit 1 msamples/s analog to digital converter ? 2 single ended channels/1 differential channels ? on-chip temperature sensor ? 12-bit 500 ksamples/s digital to analog converter ? 2 analog comparator ? capacitive sensing with up to 4 inputs ? 3 operational amplifier ? 6.1 mhz gbw, rail-to-rail, programmable gain ? supply voltage comparator ? low energy sensor interface (lesense) ? autonomous sensor monitoring in deep sleep mode ? wide range of sensors supported, including lc sen- sors and capacitive buttons ? ultra efficient power-on reset and brown-out detec- tor ? 2-pin serial wire debug interface ? 1-pin serial wire viewer ? pre-programmed uart bootloader ? temperature range -40 to 85 oc ? single power supply 1.98 to 3.8 v ? qfn24 package 32-bit arm cortex-m0+, cortex-m3 and cortex-m4 microcontrollers for: ? energy, gas, water and smart metering ? health and fitness applications ? smart accessories ? alarm and security systems ? industrial and home automation
...the world's most energy friendly microcontrollers 2015-03-06 - efm32tg110fxx - d0013_rev1.40 2 www.silabs.com 1 ordering information table 1.1 (p. 2 ) shows the available efm32tg110 devices. table 1.1. ordering information ordering code flash (kb) ram (kb) max speed (mhz) supply voltage (v) temperature (oc) package efm32tg110f4-qfn24 4 2 32 1.98 - 3.8 -40 - 85 qfn24 efm32tg110f8-qfn24 8 2 32 1.98 - 3.8 -40 - 85 qfn24 efm32tg110f16-qfn24 16 4 32 1.98 - 3.8 -40 - 85 qfn24 EFM32TG110F32-QFN24 32 4 32 1.98 - 3.8 -40 - 85 qfn24 visit www.silabs.com for information on global distributors and representatives.
...the world's most energy friendly microcontrollers 2015-03-06 - efm32tg110fxx - d0013_rev1.40 3 www.silabs.com 2 system summary 2.1 system introduction the efm32 mcus are the world?s most energy friendly microcontrollers. with a unique combination of the powerful 32-bit arm cortex-m3, innovative low energy techniques, short wake-up time from ener- gy saving modes, and a wide selection of peripherals, the efm32tg microcontroller is well suited for any battery operated application as well as other systems requiring high performance and low-energy consumption. this section gives a short introduction to each of the modules in general terms and also shows a summary of the configuration for the efm32tg110 devices. for a complete feature set and in- depth information on the modules, the reader is referred to the efm32tg reference manual . a block diagram of the efm32tg110 is shown in figure 2.1 (p. 3 ) . figure 2.1. block diagram clock managem ent energy managem ent s e r i a l i n t e r f a c e s i/ o p o r t s c o r e and m e m o r y tim ers and triggers a na l og i n t e r f a c e s s e c u r i t y 32 - b i t bu s p e r i phe r a l r e f l e x s ys t e m a r m c o r t e x - m 3 p r o c e ss o r f l a s h m e m o ry [ kb ] lo w e ne r g y s en s o r lo w e ne r g y t i m e r? p u l s e c oun t e r r ea l t i m e c oun t e r o pe r a t i ona l a m p li f i e r v o l t age r egu l a t o r w a t c hdog t i m e r r a m m e m o ry [ kb ] v o l t age c o m pa r a t o r p o w e r- on r e s e t b r o w n - ou t d e t e c t o r g ene r a l p u r po s e i/ o lo w e ne r g y u a r t ? a dc d a c d m a c on t r o ll e r d ebug i n t e r f a c e ex t e r na l i n t e rr up t s p i n r e s e t u sa r t i 2 c aes 4/ 8/ 16/ 32 2/ 2/ 4/ 4 17 pins tg 1 10f4/ 8/ 16/ 32 t i m e r / c oun t e r 2x 2x analog com parator hi gh f r equen cy rc o sc ill a t o r hi gh f r equen cy c r ys t a l o sc ill a t o r lo w f r equen cy c r ys t a l o sc ill a t o r lo w f r equen cy rc o sc ill a t o r w a t c hdog o sc ill a t o r aux high freq rc oscillator 2.1.1 arm cortex-m3 core the arm cortex-m3 includes a 32-bit risc processor which can achieve as much as 1.25 dhrystone mips/mhz. a wake-up interrupt controller handling interrupts triggered while the cpu is asleep is in- cluded as well . the efm32 implementation of the cortex-m3 is described in detail in efm32 cortex-m3 reference manual . 2.1.2 debug interface (dbg) this device includes hardware debug support through a 2-pin serial-wire debug interface . in addition there is also a 1-wire serial wire viewer pin which can be used to output profiling information, data trace and software-generated messages. 2.1.3 memory system controller (msc) the memory system controller (msc) is the program memory unit of the efm32tg microcontroller. the flash memory is readable and writable from both the cortex-m3 and dma . the flash memory is
...the world's most energy friendly microcontrollers 2015-03-06 - efm32tg110fxx - d0013_rev1.40 4 www.silabs.com divided into two blocks; the main block and the information block. program code is normally written to the main block. additionally, the information block is available for special user data and flash lock bits. there is also a read-only page in the information block containing system and device calibration data. read and write operations are supported in the energy modes em0 and em1. 2.1.4 direct memory access controller (dma) the direct memory access (dma) controller performs memory operations independently of the cpu. this has the benefit of reducing the energy consumption and the workload of the cpu, and enables the system to stay in low energy modes when moving for instance data from the usart to ram or from the external bus interface to a pwm-generating timer. the dma controller uses the pl230 dma controller licensed from arm. 2.1.5 reset management unit (rmu) the rmu is responsible for handling the reset functionality of the efm32tg. 2.1.6 energy management unit (emu) the energy management unit (emu) manage all the low energy modes (em) in efm32tg microcon- trollers. each energy mode manages if the cpu and the various peripherals are available. the emu can also be used to turn off the power to unused sram blocks. 2.1.7 clock management unit (cmu) the clock management unit (cmu) is responsible for controlling the oscillators and clocks on-board the efm32tg. the cmu provides the capability to turn on and off the clock on an individual basis to all peripheral modules in addition to enable/disable and configure the available oscillators. the high degree of flexibility enables software to minimize energy consumption in any specific application by not wasting power on peripherals and oscillators that are inactive. 2.1.8 watchdog (wdog) the purpose of the watchdog timer is to generate a reset in case of a system failure, to increase appli- cation reliability. the failure may e.g. be caused by an external event, such as an esd pulse, or by a software failure. 2.1.9 peripheral reflex system (prs) the peripheral reflex system (prs) system is a network which lets the different peripheral module communicate directly with each other without involving the cpu. peripheral modules which send out reflex signals are called producers. the prs routes these reflex signals to consumer peripherals which apply actions depending on the data received. the format for the reflex signals is not given, but edge triggers and other functionality can be applied by the prs. 2.1.10 inter-integrated circuit interface (i2c) the i 2 c module provides an interface between the mcu and a serial i 2 c-bus. it is capable of acting as both a master and a slave, and supports multi-master buses. both standard-mode, fast-mode and fast- mode plus speeds are supported, allowing transmission rates all the way from 10 kbit/s up to 1 mbit/s. slave arbitration and timeouts are also provided to allow implementation of an smbus compliant system. the interface provided to software by the i 2 c module, allows both fine-grained control of the transmission process and close to automatic transfers. automatic recognition of slave addresses is provided in all energy modes.
...the world's most energy friendly microcontrollers 2015-03-06 - efm32tg110fxx - d0013_rev1.40 5 www.silabs.com 2.1.11 universal synchronous/asynchronous receiver/transmitter (us- art) the universal synchronous asynchronous serial receiver and transmitter (usart) is a very flexible serial i/o module. it supports full duplex asynchronous uart communication as well as rs-485, spi, microwire and 3-wire. it can also interface with iso7816 smartcards, irda and i2s devices. 2.1.12 pre-programmed uart bootloader the bootloader presented in application note an0003 is pre-programmed in the device at factory. auto- baud and destructive write are supported. the autobaud feature, interface and commands are described further in the application note. 2.1.13 low energy universal asynchronous receiver/transmitter (leuart) the unique leuart tm , the low energy uart, is a uart that allows two-way uart communication on a strict power budget. only a 32.768 khz clock is needed to allow uart communication up to 9600 baud/ s. the leuart includes all necessary hardware support to make asynchronous serial communication possible with minimum of software intervention and energy consumption. 2.1.14 timer/counter (timer) the 16-bit general purpose timer has 3 compare/capture channels for input capture and compare/pulse- width modulation (pwm) output. 2.1.15 real time counter (rtc) the real time counter (rtc) contains a 24-bit counter and is clocked either by a 32.768 khz crystal oscillator, or a 32.768 khz rc oscillator. in addition to energy modes em0 and em1, the rtc is also available in em2. this makes it ideal for keeping track of time since the rtc is enabled in em2 where most of the device is powered down. 2.1.16 low energy timer (letimer) the unique letimer tm , the low energy timer, is a 16-bit timer that is available in energy mode em2 in addition to em1 and em0. because of this, it can be used for timing and output generation when most of the device is powered down, allowing simple tasks to be performed while the power consumption of the system is kept at an absolute minimum. the letimer can be used to output a variety of waveforms with minimal software intervention. it is also connected to the real time counter (rtc), and can be configured to start counting on compare matches from the rtc. 2.1.17 pulse counter (pcnt) the pulse counter (pcnt) can be used for counting pulses on a single input or to decode quadrature encoded inputs. it runs off either the internal lfaclk or the pcntn_s0in pin as external clock source. the module may operate in energy mode em0 - em3. 2.1.18 analog comparator (acmp) the analog comparator is used to compare the voltage of two analog inputs, with a digital output indi- cating which input voltage is higher. inputs can either be one of the selectable internal references or from external pins. response time and thereby also the current consumption can be configured by altering the current supply to the comparator.
...the world's most energy friendly microcontrollers 2015-03-06 - efm32tg110fxx - d0013_rev1.40 6 www.silabs.com 2.1.19 voltage comparator (vcmp) the voltage supply comparator is used to monitor the supply voltage from software. an interrupt can be generated when the supply falls below or rises above a programmable threshold. response time and thereby also the current consumption can be configured by altering the current supply to the comparator. 2.1.20 analog to digital converter (adc) the adc is a successive approximation register (sar) architecture, with a resolution of up to 12 bits at up to one million samples per second. the integrated input mux can select inputs from 2 external pins and 6 internal signals. 2.1.21 digital to analog converter (dac) the digital to analog converter (dac) can convert a digital value to an analog output voltage. the dac is fully differential rail-to-rail, with 12-bit resolution. it has one single ended output buffer connected to channel 0. the dac may be used for a number of different applications such as sensor interfaces or sound output. 2.1.22 operational amplifier (opamp) the efm32tg110 features 3 operational amplifiers. the operational amplifier is a versatile general purpose amplifier with rail-to-rail differential input and rail-to-rail single ended output. the input can be set to pin, dac or opamp, whereas the output can be pin, opamp or adc. the current is programmable and the opamp has various internal configurations such as unity gain, programmable gain using internal resistors etc. 2.1.23 low energy sensor interface (lesense) the low energy sensor interface (lesense tm ), is a highly configurable sensor interface with support for up to 4 individually configurable sensors. by controlling the analog comparators and dac, lesense is capable of supporting a wide range of sensors and measurement schemes, and can for instance mea- sure lc sensors, resistive sensors and capacitive sensors. lesense also includes a programmable fsm which enables simple processing of measurement results without cpu intervention. lesense is available in energy mode em2, in addition to em0 and em1, making it ideal for sensor monitoring in applications with a strict energy budget. 2.1.24 advanced encryption standard accelerator (aes) the aes accelerator performs aes encryption and decryption with 128-bit or 256-bit keys . encrypting or decrypting one 128-bit data block takes 52 hfcoreclk cycles with 128-bit keys and 75 hfcoreclk cycles with 256-bit keys . the aes module is an ahb slave which enables efficient access to the data and key registers. all write accesses to the aes module must be 32-bit operations, i.e. 8- or 16-bit operations are not supported. 2.1.25 general purpose input/output (gpio) in the efm32tg110, there are 17 general purpose input/output (gpio) pins, which are divided into ports with up to 16 pins each. these pins can individually be configured as either an output or input. more advanced configurations like open-drain, filtering and drive strength can also be configured individually for the pins. the gpio pins can also be overridden by peripheral pin connections, like timer pwm outputs or usart communication, which can be routed to several locations on the device. the gpio supports up to 11 asynchronous external pin interrupts, which enables interrupts from any pin on the device. also, the input value of a pin can be routed through the peripheral reflex system to other peripherals.
...the world's most energy friendly microcontrollers 2015-03-06 - efm32tg110fxx - d0013_rev1.40 7 www.silabs.com 2.2 configuration summary the features of the efm32tg110 is a subset of the feature set described in the efm32tg reference manual. table 2.1 (p. 7 ) describes device specific implementation of the features. table 2.1. configuration summary module configuration pin connections cortex-m3 full configuration na dbg full configuration dbg_swclk, dbg_swdio, dbg_swo msc full configuration na dma full configuration na rmu full configuration na emu full configuration na cmu full configuration cmu_out0, cmu_out1 wdog full configuration na prs full configuration na i2c0 full configuration i2c0_sda, i2c0_scl usart0 full configuration with irda us0_tx, us0_rx. us0_clk, us0_cs usart1 full configuration with i2s us1_tx, us1_rx, us1_clk, us1_cs leuart0 full configuration leu0_tx, leu0_rx timer0 full configuration tim0_cc[2:0] timer1 full configuration tim1_cc[2:0] rtc full configuration na letimer0 full configuration let0_o[1:0] pcnt0 full configuration, 16-bit count register pcnt0_s[1:0] acmp0 full configuration acmp0_ch[1:0], acmp0_o acmp1 full configuration acmp1_ch[1:0], acmp1_o vcmp full configuration na adc0 full configuration adc0_ch[7:6] dac0 full configuration dac0_out[0] , dac0_outxalt opamp not all pins available outputs: opamp_out0, opamp_out0alt, opamp_out1alt, inputs: opamp_p1, opamp_n1 aes full configuration na gpio 17 pins available pins are shown in table 4.3 (p. 49 ) 2.3 memory map the efm32tg110 memory map is shown in figure 2.2 (p. 8 ) , with ram and flash sizes for the largest memory configuration.
...the world's most energy friendly microcontrollers 2015-03-06 - efm32tg110fxx - d0013_rev1.40 8 www.silabs.com figure 2.2. efm32tg110 memory map with largest ram and flash sizes
...the world's most energy friendly microcontrollers 2015-03-06 - efm32tg110fxx - d0013_rev1.40 9 www.silabs.com 3 electrical characteristics 3.1 test conditions 3.1.1 typical values the typical data are based on t amb =25c and v dd =3.0 v, as defined in table 3.2 (p. 9 ) , by simu- lation and/or technology characterisation unless otherwise specified. 3.1.2 minimum and maximum values the minimum and maximum values represent the worst conditions of ambient temperature, supply volt- age and frequencies, as defined in table 3.2 (p. 9 ) , by simulation and/or technology characterisa- tion unless otherwise specified. 3.2 absolute maximum ratings the absolute maximum ratings are stress ratings, and functional operation under such conditions are not guaranteed. stress beyond the limits specified in table 3.1 (p. 9 ) may affect the device reliability or cause permanent damage to the device. functional operating conditions are given in table 3.2 (p. 9 ) . table 3.1. absolute maximum ratings symbol parameter condition min typ max unit t stg storage tempera- ture range -40 150 1 c t s maximum soldering temperature latest ipc/jedec j-std-020 standard 260 c v ddmax external main sup- ply voltage 0 3.8 v v iopin voltage on any i/o pin -0.3 v dd +0.3 v 1 based on programmed devices tested for 10000 hours at 150c. storage temperature affects retention of preprogrammed cal- ibration values stored in flash. please refer to the flash section in the electrical characteristics for information on flash data re- tention for different temperatures. 3.3 general operating conditions 3.3.1 general operating conditions table 3.2. general operating conditions symbol parameter min typ max unit t amb ambient temperature range -40 85 c v ddop operating supply voltage 1.98 3.8 v f apb internal apb clock frequency 32 mhz f ahb internal ahb clock frequency 32 mhz
...the world's most energy friendly microcontrollers 2015-03-06 - efm32tg110fxx - d0013_rev1.40 10 www.silabs.com 3.4 current consumption table 3.3. current consumption symbol parameter condition min typ max unit 32 mhz hfxo, all peripheral clocks disabled, v dd = 3.0 v 157 a/ mhz 28 mhz hfrco, all peripheral clocks disabled, v dd = 3.0 v 150 170 a/ mhz 21 mhz hfrco, all peripheral clocks disabled, v dd = 3.0 v 153 172 a/ mhz 14 mhz hfrco, all peripheral clocks disabled, v dd = 3.0 v 155 175 a/ mhz 11 mhz hfrco, all peripheral clocks disabled, v dd = 3.0 v 157 178 a/ mhz 6.6 mhz hfrco, all peripheral clocks disabled, v dd = 3.0 v 162 183 a/ mhz i em0 em0 current. no prescaling. running prime number cal- culation code from flash. (production test condition = 14 mhz) 1.2 mhz hfrco, all peripheral clocks disabled, v dd = 3.0 v 200 240 a/ mhz 32 mhz hfxo, all peripheral clocks disabled, v dd = 3.0 v 53 a/ mhz 28 mhz hfrco, all peripheral clocks disabled, v dd = 3.0 v 51 57 a/ mhz 21 mhz hfrco, all peripheral clocks disabled, v dd = 3.0 v 55 59 a/ mhz 14 mhz hfrco, all peripheral clocks disabled, v dd = 3.0 v 56 61 a/ mhz 11 mhz hfrco, all peripheral clocks disabled, v dd = 3.0 v 58 63 a/ mhz 6.6 mhz hfrco, all peripheral clocks disabled, v dd = 3.0 v 63 68 a/ mhz i em1 em1 current (pro- duction test condi- tion = 14 mhz) 1.2 mhz hfrco. all peripheral clocks disabled, v dd = 3.0 v 100 122 a/ mhz em2 current with rtc prescaled to 1 hz, 32.768 khz lfrco, v dd = 3.0 v, t amb =25c 1.0 1.2 a i em2 em2 current em2 current with rtc prescaled to 1 hz, 32.768 khz lfrco, v dd = 3.0 v, t amb =85c 2.4 5.0 a v dd = 3.0 v, t amb =25c 0.59 1.0 a i em3 em3 current v dd = 3.0 v, t amb =85c 2.0 4.5 a v dd = 3.0 v, t amb =25c 0.02 0.055 a i em4 em4 current v dd = 3.0 v, t amb =85c 0.25 0.70 a
...the world's most energy friendly microcontrollers 2015-03-06 - efm32tg110fxx - d0013_rev1.40 11 www.silabs.com figure 3.1. em2 current consumption. rtc prescaled to 1khz, 32.768 khz lfrco. figure 3.2. em3 current consumption. figure 3.3. em4 current consumption.
...the world's most energy friendly microcontrollers 2015-03-06 - efm32tg110fxx - d0013_rev1.40 12 www.silabs.com 3.5 transition between energy modes the transition times are measured from the trigger to the first clock edge in the cpu. table 3.4. energy modes transitions symbol parameter min typ max unit t em10 transition time from em1 to em0 0 hf- core- clk cycles t em20 transition time from em2 to em0 2 s t em30 transition time from em3 to em0 2 s t em40 transition time from em4 to em0 163 s 3.6 power management the efm32tg requires the avdd_x, vdd_dreg and iovdd_x pins to be connected together (with optional filter) at the pcb level. for practical schematic recommendations, please see the application note, "an0002 efm32 hardware design considerations". table 3.5. power management symbol parameter condition min typ max unit v bodextthr- bod threshold on falling external sup- ply voltage 1.74 1.96 v v bodextthr+ bod threshold on rising external sup- ply voltage 1.85 1.98 v v porthr+ power-on reset (por) threshold on rising external sup- ply voltage 1.98 v t reset delay from reset is released until program execution starts applies to power-on reset, brown-out reset and pin reset. 163 s c decouple voltage regulator decoupling capaci- tor. x5r capacitor recommended. apply between decouple pin and ground 1 f
...the world's most energy friendly microcontrollers 2015-03-06 - efm32tg110fxx - d0013_rev1.40 13 www.silabs.com 3.7 flash table 3.6. flash symbol parameter condition min typ max unit ec flash flash erase cycles before failure 20000 cycles t amb <150c 10000 h t amb <85c 10 years ret flash flash data retention t amb <70c 20 years t w_prog word (32-bit) pro- gramming time 20 s t p_erase page erase time 20 20.4 20.8 ms t d_erase device erase time 40 40.8 41.6 ms i erase erase current 7 1 ma i write write current 7 1 ma v flash supply voltage dur- ing flash erase and write 1.98 3.8 v 1 measured at 25c 3.8 general purpose input output table 3.7. gpio symbol parameter condition min typ max unit v ioil input low voltage 0.30v dd v v ioih input high voltage 0.70v dd v sourcing 0.1 ma, v dd =1.98 v, gpio_px_ctrl drivemode = lowest 0.80v dd v sourcing 0.1 ma, v dd =3.0 v, gpio_px_ctrl drivemode = lowest 0.90v dd v sourcing 1 ma, v dd =1.98 v, gpio_px_ctrl drivemode = low 0.85v dd v sourcing 1 ma, v dd =3.0 v, gpio_px_ctrl drivemode = low 0.90v dd v sourcing 6 ma, v dd =1.98 v, gpio_px_ctrl drivemode = standard 0.75v dd v sourcing 6 ma, v dd =3.0 v, gpio_px_ctrl drivemode = standard 0.85v dd v v iooh output high volt- age (production test condition = 3.0v, drivemode = standard) sourcing 20 ma, v dd =1.98 v, gpio_px_ctrl drivemode = high 0.60v dd v
...the world's most energy friendly microcontrollers 2015-03-06 - efm32tg110fxx - d0013_rev1.40 14 www.silabs.com symbol parameter condition min typ max unit sourcing 20 ma, v dd =3.0 v, gpio_px_ctrl drivemode = high 0.80v dd v sinking 0.1 ma, v dd =1.98 v, gpio_px_ctrl drivemode = lowest 0.20v dd v sinking 0.1 ma, v dd =3.0 v, gpio_px_ctrl drivemode = lowest 0.10v dd v sinking 1 ma, v dd =1.98 v, gpio_px_ctrl drivemode = low 0.10v dd v sinking 1 ma, v dd =3.0 v, gpio_px_ctrl drivemode = low 0.05v dd v sinking 6 ma, v dd =1.98 v, gpio_px_ctrl drivemode = standard 0.30v dd v sinking 6 ma, v dd =3.0 v, gpio_px_ctrl drivemode = standard 0.20v dd v sinking 20 ma, v dd =1.98 v, gpio_px_ctrl drivemode = high 0.35v dd v v iool output low voltage (production test condition = 3.0v, drivemode = standard) sinking 20 ma, v dd =3.0 v, gpio_px_ctrl drivemode = high 0.20v dd v i ioleak input leakage cur- rent high impedance io connected to ground or v dd 0.1 100 na r pu i/o pin pull-up resis- tor 40 kohm r pd i/o pin pull-down re- sistor 40 kohm r ioesd internal esd series resistor 200 ohm t ioglitch pulse width of puls- es to be removed by the glitch sup- pression filter 10 50 ns gpio_px_ctrl drivemode = lowest and load capaci- tance c l =12.5-25pf. 20+0.1c l 250 ns t ioof output fall time gpio_px_ctrl drivemode = low and load capacitance c l =350-600pf 20+0.1c l 250 ns v iohyst i/o pin hysteresis (v iothr+ - v iothr- ) v dd = 1.98 - 3.8 v 0.1v dd v
...the world's most energy friendly microcontrollers 2015-03-06 - efm32tg110fxx - d0013_rev1.40 15 www.silabs.com figure 3.4. typical low-level output current, 2v supply voltage 0.0 0.5 1.0 1.5 2.0 low- level output voltage [v] 0.00 0.05 0.10 0.15 0.20 low- level output current [m a] - 40c 25c 85c gpio_px_ctrl drivemode = lowest 0.0 0.5 1.0 1.5 2.0 low- level output voltage [v] 0 1 2 3 4 5 low- level output current [m a] - 40c 25c 85c gpio_px_ctrl drivemode = low 0.0 0.5 1.0 1.5 2.0 low- level output voltage [v] 0 5 10 15 20 low- level output current [m a] - 40c 25c 85c gpio_px_ctrl drivemode = standard 0.0 0.5 1.0 1.5 2.0 low- level output voltage [v] 0 5 10 15 20 25 30 35 40 45 low- level output current [m a] - 40c 25c 85c gpio_px_ctrl drivemode = high
...the world's most energy friendly microcontrollers 2015-03-06 - efm32tg110fxx - d0013_rev1.40 16 www.silabs.com figure 3.5. typical high-level output current, 2v supply voltage 0.0 0.5 1.0 1.5 2.0 high- level output voltage [v] ?0.20 ?0.15 ?0.10 ?0.05 0.00 high- level output current [m a] - 40c 25c 85c gpio_px_ctrl drivemode = lowest 0.0 0.5 1.0 1.5 2.0 high- level output voltage [v] ?2.5 ?2.0 ?1.5 ?1.0 ?0.5 0.0 high- level output current [m a] - 40c 25c 85c gpio_px_ctrl drivemode = low 0.0 0.5 1.0 1.5 2.0 high- level output voltage [v] ?20 ?15 ?10 ?5 0 high- level output current [m a] - 40c 25c 85c gpio_px_ctrl drivemode = standard 0.0 0.5 1.0 1.5 2.0 high- level output voltage [v] ?50 ?40 ?30 ?20 ?10 0 high- level output current [m a] - 40c 25c 85c gpio_px_ctrl drivemode = high
...the world's most energy friendly microcontrollers 2015-03-06 - efm32tg110fxx - d0013_rev1.40 17 www.silabs.com figure 3.6. typical low-level output current, 3v supply voltage 0.0 0.5 1.0 1.5 2.0 2.5 3.0 low- level output voltage [v] 0.0 0.1 0.2 0.3 0.4 0.5 low- level output current [m a] - 40c 25c 85c gpio_px_ctrl drivemode = lowest 0.0 0.5 1.0 1.5 2.0 2.5 3.0 low- level output voltage [v] 0 2 4 6 8 10 low- level output current [m a] - 40c 25c 85c gpio_px_ctrl drivemode = low 0.0 0.5 1.0 1.5 2.0 2.5 3.0 low- level output voltage [v] 0 5 10 15 20 25 30 35 40 low- level output current [m a] - 40c 25c 85c gpio_px_ctrl drivemode = standard 0.0 0.5 1.0 1.5 2.0 2.5 3.0 low- level output voltage [v] 0 10 20 30 40 50 low- level output current [m a] - 40c 25c 85c gpio_px_ctrl drivemode = high
...the world's most energy friendly microcontrollers 2015-03-06 - efm32tg110fxx - d0013_rev1.40 18 www.silabs.com figure 3.7. typical high-level output current, 3v supply voltage 0.0 0.5 1.0 1.5 2.0 2.5 3.0 high- level output voltage [v] ?0.5 ?0.4 ?0.3 ?0.2 ?0.1 0.0 high- level output current [m a] - 40c 25c 85c gpio_px_ctrl drivemode = lowest 0.0 0.5 1.0 1.5 2.0 2.5 3.0 high- level output voltage [v] ?6 ?5 ?4 ?3 ?2 ?1 0 high- level output current [m a] - 40c 25c 85c gpio_px_ctrl drivemode = low 0.0 0.5 1.0 1.5 2.0 2.5 3.0 high- level output voltage [v] ?50 ?40 ?30 ?20 ?10 0 high- level output current [m a] - 40c 25c 85c gpio_px_ctrl drivemode = standard 0.0 0.5 1.0 1.5 2.0 2.5 3.0 high- level output voltage [v] ?50 ?40 ?30 ?20 ?10 0 high- level output current [m a] - 40c 25c 85c gpio_px_ctrl drivemode = high
...the world's most energy friendly microcontrollers 2015-03-06 - efm32tg110fxx - d0013_rev1.40 19 www.silabs.com figure 3.8. typical low-level output current, 3.8v supply voltage 0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 low- level output voltage [v] 0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 low- level output current [m a] - 40c 25c 85c gpio_px_ctrl drivemode = lowest 0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 low- level output voltage [v] 0 2 4 6 8 10 12 14 low- level output current [m a] - 40c 25c 85c gpio_px_ctrl drivemode = low 0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 low- level output voltage [v] 0 10 20 30 40 50 low- level output current [m a] - 40c 25c 85c gpio_px_ctrl drivemode = standard 0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 low- level output voltage [v] 0 10 20 30 40 50 low- level output current [m a] - 40c 25c 85c gpio_px_ctrl drivemode = high
...the world's most energy friendly microcontrollers 2015-03-06 - efm32tg110fxx - d0013_rev1.40 20 www.silabs.com figure 3.9. typical high-level output current, 3.8v supply voltage 0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 high- level output voltage [v] ?0.8 ?0.7 ?0.6 ?0.5 ?0.4 ?0.3 ?0.2 ?0.1 0.0 high- level output current [m a] - 40c 25c 85c gpio_px_ctrl drivemode = lowest 0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 high- level output voltage [v] ?9 ?8 ?7 ?6 ?5 ?4 ?3 ?2 ?1 0 high- level output current [m a] - 40c 25c 85c gpio_px_ctrl drivemode = low 0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 high- level output voltage [v] ?50 ?40 ?30 ?20 ?10 0 high- level output current [m a] - 40c 25c 85c gpio_px_ctrl drivemode = standard 0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 high- level output voltage [v] ?50 ?40 ?30 ?20 ?10 0 high- level output current [m a] - 40c 25c 85c gpio_px_ctrl drivemode = high
...the world's most energy friendly microcontrollers 2015-03-06 - efm32tg110fxx - d0013_rev1.40 21 www.silabs.com 3.9 oscillators 3.9.1 lfxo table 3.8. lfxo symbol parameter condition min typ max unit f lfxo supported nominal crystal frequency 32.768 khz esr lfxo supported crystal equivalent series re- sistance (esr) 30 120 kohm c lfxol supported crystal external load range x 1 25 pf i lfxo current consump- tion for core and buffer after startup. esr=30 kohm, c l =10 pf, lfxoboost in cmu_ctrl is 1 190 na t lfxo start- up time. esr=30 kohm, c l =10 pf, 40% - 60% duty cycle has been reached, lfxoboost in cmu_ctrl is 1 400 ms 1 see minimum load capacitance (c lfxol ) requirement for safe crystal startup in energyaware designer in simplicity studio for safe startup of a given crystal, the energyaware designer in simplicity studio contains a tool to help users configure both load capacitance and software settings for using the lfxo. for details regarding the crystal configuration, the reader is referred to application note "an0016 efm32 oscillator design consideration". 3.9.2 hfxo table 3.9. hfxo symbol parameter condition min typ max unit f hfxo supported nominal crystal frequency 4 32 mhz crystal frequency 32 mhz 30 60 ohm esr hfxo supported crystal equivalent series re- sistance (esr) crystal frequency 4 mhz 400 1500 ohm g mhfxo the transconduc- tance of the hfxo input transistor at crystal startup hfxoboost in cmu_ctrl equals 0b11 20 ms c hfxol supported crystal external load range 5 25 pf 4 mhz: esr=400 ohm, c l =20 pf, hfxoboost in cmu_ctrl equals 0b11 85 a i hfxo current consump- tion for hfxo after startup 32 mhz: esr=30 ohm, c l =10 pf, hfxoboost in cmu_ctrl equals 0b11 165 a t hfxo startup time 32 mhz: esr=30 ohm, c l =10 pf, hfxoboost in cmu_ctrl equals 0b11 400 s
...the world's most energy friendly microcontrollers 2015-03-06 - efm32tg110fxx - d0013_rev1.40 22 www.silabs.com 3.9.3 lfrco table 3.10. lfrco symbol parameter condition min typ max unit f lfrco oscillation frequen- cy , v dd = 3.0 v, t amb =25c 31.29 32.768 34.24 khz t lfrco startup time not in- cluding software calibration 150 s i lfrco current consump- tion 210 380 na tunestep l- frco frequency step for lsb change in tuning value 1.5 % figure 3.10. calibrated lfrco frequency vs temperature and supply voltage 2.0 2.2 2.4 2.6 2.8 3.0 3.2 3.4 3.6 3.8 vdd [v] 30 32 34 36 38 40 42 frequency [khz] - 40c 25c 85c ?40 ?15 5 25 45 65 85 tem perature [c] 30 32 34 36 38 40 42 frequency [khz] 2.0 v 3.0 v 3.8 v 3.9.4 hfrco table 3.11. hfrco symbol parameter condition min typ max unit 28 mhz frequency band 27.16 28.0 28.84 mhz 21 mhz frequency band 20.37 21.0 21.63 mhz 14 mhz frequency band 13.58 14.0 14.42 mhz 11 mhz frequency band 10.67 11.0 11.33 mhz 7 mhz frequency band 6.40 1 6.60 1 6.80 1 mhz f hfrco oscillation frequen- cy, v dd = 3.0 v, t amb =25c 1 mhz frequency band 1.16 2 1.20 2 1.24 2 mhz t hfrco_settling settling time after start-up f hfrco = 14 mhz 0.6 cycles f hfrco = 28 mhz 160 190 a i hfrco current consump- tion (production test condition = 14 mhz) f hfrco = 21 mhz 125 155 a
...the world's most energy friendly microcontrollers 2015-03-06 - efm32tg110fxx - d0013_rev1.40 23 www.silabs.com symbol parameter condition min typ max unit f hfrco = 14 mhz 104 120 a f hfrco = 11 mhz 94 110 a f hfrco = 6.6 mhz 63 90 a f hfrco = 1.2 mhz 22 32 a tunestep h- frco frequency step for lsb change in tuning value 0.3 3 % 1 for devices with prod. rev. < 19, typ = 7mhz and min/max values not applicable. 2 for devices with prod. rev. < 19, typ = 1mhz and min/max values not applicable. 3 the tuning field in the cmu_hfrcoctrl register may be used to adjust the hfrco frequency. there is enough adjustment range to ensure that the frequency bands above 7 mhz will always have some overlap across supply voltage and temperature. by using a stable frequency reference such as the lfxo or hfxo, a firmware calibration routine can vary the tuning bits and the frequency band to maintain the hfrco frequency at any arbitrary value between 7 mhz and 28 mhz across operating conditions. figure 3.11. calibrated hfrco 1 mhz band frequency vs supply voltage and temperature 2.0 2.2 2.4 2.6 2.8 3.0 3.2 3.4 3.6 3.8 vdd [v] 1.05 1.10 1.15 1.20 1.25 1.30 1.35 1.40 1.45 frequency [mhz] - 40c 25c 85c ?40 ?15 5 25 45 65 85 tem perature [c] 1.05 1.10 1.15 1.20 1.25 1.30 1.35 1.40 1.45 frequency [mhz] 2.0 v 3.0 v 3.8 v figure 3.12. calibrated hfrco 7 mhz band frequency vs supply voltage and temperature 2.0 2.2 2.4 2.6 2.8 3.0 3.2 3.4 3.6 3.8 vdd [v] 6.30 6.35 6.40 6.45 6.50 6.55 6.60 6.65 6.70 frequency [mhz] - 40c 25c 85c ?40 ?15 5 25 45 65 85 tem perature [c] 6.30 6.35 6.40 6.45 6.50 6.55 6.60 6.65 6.70 frequency [mhz] 2.0 v 3.0 v 3.8 v
...the world's most energy friendly microcontrollers 2015-03-06 - efm32tg110fxx - d0013_rev1.40 24 www.silabs.com figure 3.13. calibrated hfrco 11 mhz band frequency vs supply voltage and temperature 2.0 2.2 2.4 2.6 2.8 3.0 3.2 3.4 3.6 3.8 vdd [v] 10.6 10.7 10.8 10.9 11.0 11.1 11.2 frequency [mhz] - 40c 25c 85c ?40 ?15 5 25 45 65 85 tem perature [c] 10.6 10.7 10.8 10.9 11.0 11.1 11.2 frequency [mhz] 2.0 v 3.0 v 3.8 v figure 3.14. calibrated hfrco 14 mhz band frequency vs supply voltage and temperature 2.0 2.2 2.4 2.6 2.8 3.0 3.2 3.4 3.6 3.8 vdd [v] 13.4 13.5 13.6 13.7 13.8 13.9 14.0 14.1 14.2 frequency [mhz] - 40c 25c 85c ?40 ?15 5 25 45 65 85 tem perature [c] 13.4 13.5 13.6 13.7 13.8 13.9 14.0 14.1 14.2 frequency [mhz] 2.0 v 3.0 v 3.8 v figure 3.15. calibrated hfrco 21 mhz band frequency vs supply voltage and temperature 2.0 2.2 2.4 2.6 2.8 3.0 3.2 3.4 3.6 3.8 vdd [v] 20.2 20.4 20.6 20.8 21.0 21.2 frequency [mhz] - 40c 25c 85c ?40 ?15 5 25 45 65 85 tem perature [c] 20.2 20.4 20.6 20.8 21.0 21.2 frequency [mhz] 2.0 v 3.0 v 3.8 v
...the world's most energy friendly microcontrollers 2015-03-06 - efm32tg110fxx - d0013_rev1.40 25 www.silabs.com figure 3.16. calibrated hfrco 28 mhz band frequency vs supply voltage and temperature 2.0 2.2 2.4 2.6 2.8 3.0 3.2 3.4 3.6 3.8 vdd [v] 26.8 27.0 27.2 27.4 27.6 27.8 28.0 28.2 frequency [mhz] - 40c 25c 85c ?40 ?15 5 25 45 65 85 tem perature [c] 26.8 27.0 27.2 27.4 27.6 27.8 28.0 28.2 28.4 frequency [mhz] 2.0 v 3.0 v 3.8 v 3.9.5 auxhfrco table 3.12. auxhfrco symbol parameter condition min typ max unit 28 mhz frequency band 27.16 28.0 28.84 mhz 21 mhz frequency band 20.37 21.0 21.63 mhz 14 mhz frequency band 13.58 14.0 14.42 mhz 11 mhz frequency band 10.67 11.0 11.33 mhz 7 mhz frequency band 6.40 1 6.60 1 6.80 1 mhz f auxhfrco oscillation frequen- cy, v dd = 3.0 v, t amb =25c 1 mhz frequency band 1.16 2 1.20 2 1.24 2 mhz t auxhfrco_settling settling time after start-up f auxhfrco = 14 mhz 0.6 cycles tunestep aux- hfrco frequency step for lsb change in tuning value 0.3 3 % 1 for devices with prod. rev. < 19, typ = 7mhz and min/max values not applicable. 2 for devices with prod. rev. < 19, typ = 1mhz and min/max values not applicable. 3 the tuning field in the cmu_auxhfrcoctrl register may be used to adjust the auxhfrco frequency. there is enough adjustment range to ensure that the frequency bands above 7 mhz will always have some overlap across supply voltage and temperature. by using a stable frequency reference such as the lfxo or hfxo, a firmware calibration routine can vary the tuning bits and the frequency band to maintain the auxhfrco frequency at any arbitrary value between 7 mhz and 28 mhz across operating conditions. 3.9.6 ulfrco table 3.13. ulfrco symbol parameter condition min typ max unit f ulfrco oscillation frequen- cy 25c, 3v 0.70 1.75 khz tc ulfrco temperature coeffi- cient 0.05 %/c vc ulfrco supply voltage co- efficient -18.2 %/v
...the world's most energy friendly microcontrollers 2015-03-06 - efm32tg110fxx - d0013_rev1.40 26 www.silabs.com 3.10 analog digital converter (adc) table 3.14. adc symbol parameter condition min typ max unit single ended 0 v ref v v adcin input voltage range differential -v ref /2 v ref /2 v v adcrefin input range of exter- nal reference volt- age, single ended and differential 1.25 v dd v v adcrefin_ch7 input range of ex- ternal negative ref- erence voltage on channel 7 see v adcrefin 0 v dd - 1.1 v v adcrefin_ch6 input range of ex- ternal positive ref- erence voltage on channel 6 see v adcrefin 0.625 v dd v v adccmin common mode in- put range 0 v dd v i adcin input current 2pf sampling capacitors <100 na cmrr adc analog input com- mon mode rejection ratio 65 db 1 msamples/s, 12 bit, external reference 377 a 10 ksamples/s 12 bit, internal 1.25 v reference, warmup- mode in adcn_ctrl set to 0b00 67 a 10 ksamples/s 12 bit, internal 1.25 v reference, warmup- mode in adcn_ctrl set to 0b01 68 a 10 ksamples/s 12 bit, internal 1.25 v reference, warmup- mode in adcn_ctrl set to 0b10 71 a i adc average active cur- rent 10 ksamples/s 12 bit, internal 1.25 v reference, warmup- mode in adcn_ctrl set to 0b11 244 a i adcref current consump- tion of internal volt- age reference internal voltage reference 65 a c adcin input capacitance 2 pf r adcin input on resistance 1 mohm r adcfilt input rc filter resis- tance 10 kohm c adcfilt input rc filter/de- coupling capaci- tance 250 ff
...the world's most energy friendly microcontrollers 2015-03-06 - efm32tg110fxx - d0013_rev1.40 27 www.silabs.com symbol parameter condition min typ max unit f adcclk adc clock fre- quency 13 mhz 6 bit 7 adc- clk cycles 8 bit 11 adc- clk cycles t adcconv conversion time 12 bit 13 adc- clk cycles t adcacq acquisition time programmable 1 256 adc- clk cycles t adcacqvdd3 required acquisi- tion time for vdd/3 reference 2 s startup time of ref- erence generator and adc core in normal mode 5 s t adcstart startup time of ref- erence generator and adc core in keepadcwarm mode 1 s 1 msamples/s, 12 bit, single ended, internal 1.25v refer- ence 59 db 1 msamples/s, 12 bit, single ended, internal 2.5v reference 63 db 1 msamples/s, 12 bit, single ended, v dd reference 65 db 1 msamples/s, 12 bit, differen- tial, internal 1.25v reference 60 db 1 msamples/s, 12 bit, differen- tial, internal 2.5v reference 65 db 1 msamples/s, 12 bit, differen- tial, 5v reference 54 db 1 msamples/s, 12 bit, differen- tial, v dd reference 67 db 1 msamples/s, 12 bit, differen- tial, 2xv dd reference 69 db 200 ksamples/s, 12 bit, sin- gle ended, internal 1.25v refer- ence 62 db 200 ksamples/s, 12 bit, single ended, internal 2.5v reference 63 db snr adc signal to noise ra- tio (snr) 200 ksamples/s, 12 bit, single ended, v dd reference 63 67 db
...the world's most energy friendly microcontrollers 2015-03-06 - efm32tg110fxx - d0013_rev1.40 28 www.silabs.com symbol parameter condition min typ max unit 200 ksamples/s, 12 bit, differ- ential, internal 1.25v reference 63 db 200 ksamples/s, 12 bit, differ- ential, internal 2.5v reference 66 db 200 ksamples/s, 12 bit, differ- ential, 5v reference 66 db 200 ksamples/s, 12 bit, differ- ential, v dd reference 69 db 200 ksamples/s, 12 bit, differ- ential, 2xv dd reference 70 db 1 msamples/s, 12 bit, single ended, internal 1.25v refer- ence 58 db 1 msamples/s, 12 bit, single ended, internal 2.5v reference 62 db 1 msamples/s, 12 bit, single ended, v dd reference 64 db 1 msamples/s, 12 bit, differen- tial, internal 1.25v reference 60 db 1 msamples/s, 12 bit, differen- tial, internal 2.5v reference 64 db 1 msamples/s, 12 bit, differen- tial, 5v reference 54 db 1 msamples/s, 12 bit, differen- tial, v dd reference 66 db 1 msamples/s, 12 bit, differen- tial, 2xv dd reference 68 db 200 ksamples/s, 12 bit, sin- gle ended, internal 1.25v refer- ence 61 db 200 ksamples/s, 12 bit, single ended, internal 2.5v reference 65 db 200 ksamples/s, 12 bit, single ended, v dd reference 66 db 200 ksamples/s, 12 bit, differ- ential, internal 1.25v reference 63 db 200 ksamples/s, 12 bit, differ- ential, internal 2.5v reference 66 db 200 ksamples/s, 12 bit, differ- ential, 5v reference 66 db 200 ksamples/s, 12 bit, differ- ential, v dd reference 62 68 db sinad adc signal-to-noise and distortion-ratio (sinad) 200 ksamples/s, 12 bit, differ- ential, 2xv dd reference 69 db 1 msamples/s, 12 bit, single ended, internal 1.25v refer- ence 64 dbc sfdr adc spurious-free dy- namic range (sf- dr) 1 msamples/s, 12 bit, single ended, internal 2.5v reference 76 dbc
...the world's most energy friendly microcontrollers 2015-03-06 - efm32tg110fxx - d0013_rev1.40 29 www.silabs.com symbol parameter condition min typ max unit 1 msamples/s, 12 bit, single ended, v dd reference 73 dbc 1 msamples/s, 12 bit, differen- tial, internal 1.25v reference 66 dbc 1 msamples/s, 12 bit, differen- tial, internal 2.5v reference 77 dbc 1 msamples/s, 12 bit, differen- tial, v dd reference 76 dbc 1 msamples/s, 12 bit, differen- tial, 2xv dd reference 75 dbc 1 msamples/s, 12 bit, differen- tial, 5v reference 69 dbc 200 ksamples/s, 12 bit, sin- gle ended, internal 1.25v refer- ence 75 dbc 200 ksamples/s, 12 bit, single ended, internal 2.5v reference 75 dbc 200 ksamples/s, 12 bit, single ended, v dd reference 68 76 dbc 200 ksamples/s, 12 bit, differ- ential, internal 1.25v reference 79 dbc 200 ksamples/s, 12 bit, differ- ential, internal 2.5v reference 79 dbc 200 ksamples/s, 12 bit, differ- ential, 5v reference 78 dbc 200 ksamples/s, 12 bit, differ- ential, v dd reference 79 dbc 200 ksamples/s, 12 bit, differ- ential, 2xv dd reference 79 dbc after calibration, single ended -4 0.3 4 mv v adcoffset offset voltage after calibration, differential 0.3 mv -1.92 mv/c tgrad adcth thermometer out- put gradient -6.3 adc codes/ c dnl adc differential non-lin- earity (dnl) v dd = 3.0 v, external 2.5v ref- erence -1 0.7 4 lsb inl adc integral non-linear- ity (inl), end point method v dd = 3.0 v, external 2.5v ref- erence 1.2 3 lsb mc adc no missing codes 11.999 1 12 bits 1.25v reference 0.01 2 0.033 3 %/c gain ed gain error drift 2.5v reference 0.01 2 0.03 3 %/c 1.25v reference 0.2 2 0.7 3 lsb/c offset ed offset error drift 2.5v reference 0.2 2 0.62 3 lsb/c 1 on the average every adc will have one missing code, most likely to appear around 2048 n*512 where n can be a value in the set {-3, -2, -1, 1, 2, 3}. there will be no missing code around 2048, and in spite of the missing code the adc will be monotonic
...the world's most energy friendly microcontrollers 2015-03-06 - efm32tg110fxx - d0013_rev1.40 30 www.silabs.com at all times so that a response to a slowly increasing input will always be a slowly increasing output. around the one code that is missing, the neighbour codes will look wider in the dnl plot. the spectra will show spurs on the level of -78dbc for a full scale input for chips that have the missing code issue. 2 typical numbers given by abs(mean) / (85 - 25). 3 max number given by (abs(mean) + 3x stddev) / (85 - 25). the integral non-linearity (inl) and differential non-linearity parameters are explained in figure 3.17 (p. 30 ) and figure 3.18 (p. 30 ) , respectively. figure 3.17. integral non-linearity (inl) ideal transfer curve digital ouput code analog input inl= | [(v d - v ss )/ v lsbideal ] - d| where 0 < d < 2 n - 1 0 1 2 3 4092 4093 4094 4095 v offset actual adc tranfer function before offset and gain correction actual adc tranfer function after offset and gain correction inl error ( end point inl) figure 3.18. differential non-linearity (dnl) ideal transfer curve digital ouput code analog input dnl= | [(v d + 1 - v d )/ v lsbideal ] - 1| where 0 < d < 2 n - 2 0 1 2 3 4092 4093 4094 4095 actual transfer function with one m issing code . 4 5 full scale range 0.5 lsb ideal code center ideal 50% transition point ideal spacing between two adjacent codes v lsbideal = 1 lsb code width = 2 lsb dnl = 1 lsb example: adjacent input value v d + 1 corrresponds to digital output code d + 1 example: input value v d corrresponds to digital output code d
...the world's most energy friendly microcontrollers 2015-03-06 - efm32tg110fxx - d0013_rev1.40 31 www.silabs.com 3.10.1 typical performance figure 3.19. adc frequency spectrum, vdd = 3v, temp = 25c 1.25v reference 2.5v reference 2xvddvss reference 5vdiff reference vdd reference
...the world's most energy friendly microcontrollers 2015-03-06 - efm32tg110fxx - d0013_rev1.40 32 www.silabs.com figure 3.20. adc integral linearity error vs code, vdd = 3v, temp = 25c 1.25v reference 2.5v reference 2xvddvss reference 5vdiff reference vdd reference
...the world's most energy friendly microcontrollers 2015-03-06 - efm32tg110fxx - d0013_rev1.40 33 www.silabs.com figure 3.21. adc differential linearity error vs code, vdd = 3v, temp = 25c 1.25v reference 2.5v reference 2xvddvss reference 5vdiff reference vdd reference
...the world's most energy friendly microcontrollers 2015-03-06 - efm32tg110fxx - d0013_rev1.40 34 www.silabs.com figure 3.22. adc absolute offset, common mode = vdd /2 2.0 2.2 2.4 2.6 2.8 3.0 3.2 3.4 3.6 3.8 vdd (v) ?4 ?3 ?2 ?1 0 1 2 3 4 5 actual offset [lsb] vref= 1v25 vref= 2v5 vref= 2xvddvss vref= 5vdiff vref= vdd offset vs supply voltage, temp = 25c ?40 ?15 5 25 45 65 85 tem p (c) ?1.0 ?0.5 0.0 0.5 1.0 1.5 2.0 actual offset [lsb] vref= 1v25 vref= 2v5 vref= 2xvddvss vref= 5vdiff vref= vdd offset vs temperature, vdd = 3v figure 3.23. adc dynamic performance vs temperature for all adc references, vdd = 3v ?40 ?15 5 25 45 65 85 tem perature [c] 63 64 65 66 67 68 69 70 71 snr [db] 1v25 2v5 vdd 5vdiff 2xvddvss signal to noise ratio (snr) ?40 ?15 5 25 45 65 85 tem perature [c] 78.0 78.2 78.4 78.6 78.8 79.0 79.2 79.4 sfdr [db] 1v25 2v5 vdd 5vdiff 2xvddvss spurious-free dynamic range (sfdr) 3.11 digital analog converter (dac) table 3.15. dac symbol parameter condition min typ max unit v dacout output voltage range vdd voltage reference, single ended 0 v dd v v daccm output common mode voltage range 0 v dd v 500 ksamples/s, 12bit 400 650 a 100 ksamples/s, 12 bit 200 250 a i dac active current in- cluding references for 2 channels 1 ksamples/s 12 bit normal 17 25 a sr dac sample rate 500 ksam- ples/s
...the world's most energy friendly microcontrollers 2015-03-06 - efm32tg110fxx - d0013_rev1.40 35 www.silabs.com symbol parameter condition min typ max unit continuous mode 1000 khz sample/hold mode 250 khz f dac dac clock frequen- cy sample/off mode 250 khz cyc dacconv clock cyckles per conversion 2 t dacconv conversion time 2 s t dacsettle settling time 5 s 500 ksamples/s, 12 bit, sin- gle ended, internal 1.25v refer- ence 58 db snr dac signal to noise ra- tio (snr) 500 ksamples/s, 12 bit, single ended, internal 2.5v reference 59 db 500 ksamples/s, 12 bit, sin- gle ended, internal 1.25v refer- ence 57 db sndr dac signal to noise- pulse distortion ra- tio (sndr) 500 ksamples/s, 12 bit, single ended, internal 2.5v reference 54 db 500 ksamples/s, 12 bit, sin- gle ended, internal 1.25v refer- ence 62 dbc sfdr dac spurious-free dynamic range(sfdr) 500 ksamples/s, 12 bit, single ended, internal 2.5v reference 56 dbc v dacoffset offset voltage after calibration, single ended 2 mv dnl dac differential non-lin- earity v dd = 3.0 v, v dd reference 1 lsb inl dac integral non-lineari- ty v dd = 3.0 v, v dd reference 5 lsb mc dac no missing codes 12 bits 3.12 operational amplifier (opamp) the electrical characteristics for the operational amplifiers are based on simulations. table 3.16. opamp symbol parameter condition min typ max unit opa2 biasprog=0xf, halfbias=0x0, unity gain 350 405 a opa2 biasprog=0x7, halfbias=0x1, unity gain 95 115 a i opamp active current opa2 biasprog=0x0, halfbias=0x1, unity gain 13 17 a opa2 biasprog=0xf, halfbias=0x0 101 db opa2 biasprog=0x7, halfbias=0x1 98 db g ol open loop gain opa2 biasprog=0x0, halfbias=0x1 91 db
...the world's most energy friendly microcontrollers 2015-03-06 - efm32tg110fxx - d0013_rev1.40 36 www.silabs.com symbol parameter condition min typ max unit opa0/opa1 biasprog=0xf, halfbias=0x0 16.36 mhz opa0/opa1 biasprog=0x7, halfbias=0x1 0.81 mhz opa0/opa1 biasprog=0x0, halfbias=0x1 0.11 mhz opa2 biasprog=0xf, halfbias=0x0 2.11 mhz opa2 biasprog=0x7, halfbias=0x1 0.72 mhz gbw opamp gain bandwidth product opa2 biasprog=0x0, halfbias=0x1 0.09 mhz biasprog=0xf, halfbias=0x0, c l =75 pf 64 biasprog=0x7, halfbias=0x1, c l =75 pf 58 pm opamp phase margin biasprog=0x0, halfbias=0x1, c l =75 pf 58 r input input resistance 100 mohm opa0/opa1 200 ohm r load load resistance opa2 2000 ohm opa0/opa1 11 ma i load_dc load current opa2 1.5 ma opaxhcmdis=0 v ss v dd v v input input voltage opaxhcmdis=1 v ss v dd -1.2 v v output output voltage v ss v dd v unity gain, v ss ...the world's most energy friendly microcontrollers 2015-03-06 - efm32tg110fxx - d0013_rev1.40 37 www.silabs.com symbol parameter condition min typ max unit opa0/opa1 biasprog=0xf, halfbias=0x0 0.09 s opa0/opa1 biasprog=0x7, halfbias=0x1 1.52 s opa0/opa1 biasprog=0x0, halfbias=0x1 12.74 s opa2 biasprog=0xf, halfbias=0x0 0.09 s opa2 biasprog=0x7, halfbias=0x1 0.13 s pu opamp power-up time opa2 biasprog=0x0, halfbias=0x1 0.17 s v out =1v, ressel=0, 0.1 hz ...the world's most energy friendly microcontrollers 2015-03-06 - efm32tg110fxx - d0013_rev1.40 38 www.silabs.com figure 3.25. opamp positive power supply rejection ratio figure 3.26. opamp negative power supply rejection ratio figure 3.27. opamp voltage noise spectral density (unity gain) v out =1v
...the world's most energy friendly microcontrollers 2015-03-06 - efm32tg110fxx - d0013_rev1.40 39 www.silabs.com figure 3.28. opamp voltage noise spectral density (non-unity gain)
...the world's most energy friendly microcontrollers 2015-03-06 - efm32tg110fxx - d0013_rev1.40 40 www.silabs.com 3.13 analog comparator (acmp) table 3.17. acmp symbol parameter condition min typ max unit v acmpin input voltage range 0 v dd v v acmpcm acmp common mode voltage range 0 v dd v biasprog=0b0000, full- bias=0 and halfbias=1 in acmpn_ctrl register 0.1 0.6 a biasprog=0b1111, full- bias=0 and halfbias=0 in acmpn_ctrl register 2.87 12 a i acmp active current biasprog=0b1111, full- bias=1 and halfbias=0 in acmpn_ctrl register 195 520 a internal voltage reference off. using external voltage refer- ence 0.0 0.5 a i acmpref current consump- tion of internal volt- age reference internal voltage reference 2.15 3.00 a v acmpoffset offset voltage biasprog= 0b1010, full- bias=0 and halfbias=0 in acmpn_ctrl register -12 0 12 mv v acmphyst acmp hysteresis programmable 17 mv csressel=0b00 in acmpn_inputsel 39 kohm csressel=0b01 in acmpn_inputsel 71 kohm csressel=0b10 in acmpn_inputsel 104 kohm r csres capacitive sense internal resistance csressel=0b11 in acmpn_inputsel 136 kohm t acmpstart startup time 10 s the total acmp current is the sum of the contributions from the acmp and its internal voltage reference as given in equation 3.1 (p. 40 ) . i acmpref is zero if an external voltage reference is used. total acmp active current i acmptotal = i acmp + i acmpref (3.1)
...the world's most energy friendly microcontrollers 2015-03-06 - efm32tg110fxx - d0013_rev1.40 41 www.silabs.com figure 3.29. acmp characteristics, vdd = 3v, temp = 25c, fullbias = 0, halfbias = 1 0 4 8 12 acmp_ctrl_biasprog 0.0 0.5 1.0 1.5 2.0 2.5 current [ua] current consumption, hystsel = 4 0 2 4 6 8 10 12 14 acmp_ctrl_biasprog 0 5 10 15 20 response tim e [us] hystsel= 0 hystsel= 2 hystsel= 4 hystsel= 6 response time , v cm = 1.25v, cp+ to cp- = 100mv 0 1 2 3 4 5 6 7 acmp_ctrl_hystsel 0 20 40 60 80 100 hysteresis [m v] biasprog= 0.0 biasprog= 4.0 biasprog= 8.0 biasprog= 12.0 hysteresis
...the world's most energy friendly microcontrollers 2015-03-06 - efm32tg110fxx - d0013_rev1.40 42 www.silabs.com 3.14 voltage comparator (vcmp) table 3.18. vcmp symbol parameter condition min typ max unit v vcmpin input voltage range v dd v v vcmpcm vcmp common mode voltage range v dd v biasprog=0b0000 and halfbias=1 in vcmpn_ctrl register 0.3 0.6 a i vcmp active current biasprog=0b1111 and halfbias=0 in vcmpn_ctrl register. lpref=0. 22 30 a t vcmpref startup time refer- ence generator normal 10 s single ended 10 mv v vcmpoffset offset voltage differential 10 mv v vcmphyst vcmp hysteresis 17 mv t vcmpstart startup time 10 s the v dd trigger level can be configured by setting the triglevel field of the vcmp_ctrl register in accordance with the following equation: vcmp trigger level as a function of level setting v dd trigger level =1.667v+0.034 triglevel (3.2) 3.15 i2c table 3.19. i2c standard-mode (sm) symbol parameter min typ max unit f scl scl clock frequency 0 100 1 khz t low scl clock low time 4.7 s t high scl clock high time 4.0 s t su,dat sda set-up time 250 ns t hd,dat sda hold time 8 3450 2 , 3 ns t su,sta repeated start condition set-up time 4.7 s t hd,sta (repeated) start condition hold time 4.0 s t su,sto stop condition set-up time 4.0 s t buf bus free time between a stop and start condition 4.7 s 1 for the minimum hfperclk frequency required in standard-mode, see the i2c chapter in the efm32tg reference manual. 2 the maximum sda hold time (t hd,dat ) needs to be met only when the device does not stretch the low time of scl (t low ). 3 when transmitting data, this number is guaranteed only when i2cn_clkdiv < ((3450*10 -9 [s] * f hfperclk [hz]) - 4).
...the world's most energy friendly microcontrollers 2015-03-06 - efm32tg110fxx - d0013_rev1.40 43 www.silabs.com table 3.20. i2c fast-mode (fm) symbol parameter min typ max unit f scl scl clock frequency 0 400 1 khz t low scl clock low time 1.3 s t high scl clock high time 0.6 s t su,dat sda set-up time 100 ns t hd,dat sda hold time 8 900 2 , 3 ns t su,sta repeated start condition set-up time 0.6 s t hd,sta (repeated) start condition hold time 0.6 s t su,sto stop condition set-up time 0.6 s t buf bus free time between a stop and start condition 1.3 s 1 for the minimum hfperclk frequency required in fast-mode, see the i2c chapter in the efm32tg reference manual. 2 the maximum sda hold time (t hd,dat ) needs to be met only when the device does not stretch the low time of scl (t low ). 3 when transmitting data, this number is guaranteed only when i2cn_clkdiv < ((900*10 -9 [s] * f hfperclk [hz]) - 4). table 3.21. i2c fast-mode plus (fm+) symbol parameter min typ max unit f scl scl clock frequency 0 1000 1 khz t low scl clock low time 0.5 s t high scl clock high time 0.26 s t su,dat sda set-up time 50 ns t hd,dat sda hold time 8 ns t su,sta repeated start condition set-up time 0.26 s t hd,sta (repeated) start condition hold time 0.26 s t su,sto stop condition set-up time 0.26 s t buf bus free time between a stop and start condition 0.5 s 1 for the minimum hfperclk frequency required in fast-mode plus, see the i2c chapter in the efm32tg reference manual. 3.16 digital peripherals table 3.22. digital peripherals symbol parameter condition min typ max unit i usart usart current usart idle current, clock en- abled 7.5 a/ mhz i leuart leuart current leuart idle current, clock en- abled 150 na i i2c i2c current i2c idle current, clock enabled 6.25 a/ mhz i timer timer current timer_0 idle current, clock enabled 8.75 a/ mhz i letimer letimer current letimer idle current, clock enabled 75 na i pcnt pcnt current pcnt idle current, clock en- abled 60 na
...the world's most energy friendly microcontrollers 2015-03-06 - efm32tg110fxx - d0013_rev1.40 44 www.silabs.com symbol parameter condition min typ max unit i rtc rtc current rtc idle current, clock enabled 40 na i aes aes current aes idle current, clock enabled 2.5 a/ mhz i gpio gpio current gpio idle current, clock en- abled 5.31 a/ mhz i prs prs current prs idle current 2.81 a/ mhz i dma dma current clock enable 8.12 a/ mhz
...the world's most energy friendly microcontrollers 2015-03-06 - efm32tg110fxx - d0013_rev1.40 45 www.silabs.com 4 pinout and package note please refer to the application note "an0002 efm32 hardware design considerations" for guidelines on designing printed circuit boards (pcb's) for the efm32tg110. 4.1 pinout the efm32tg110 pinout is shown in figure 4.1 (p. 45 ) and table 4.1 (p. 45 ) . alternate locations are denoted by "#" followed by the location number (multiple locations on the same pin are split with "/"). alternate locations can be configured in the location bitfield in the *_route register in the module in question. figure 4.1. efm32tg110 pinout (top view, not to scale) table 4.1. device pinout qfn24 pin# and name pin alternate functionality / description pin # pin name analog timers communication other 0 vss ground. 1 pa0 tim0_cc0 #0/1/4 leu0_rx #4 i2c0_sda #0 prs_ch0 #0 gpio_em4wu0 2 iovdd_0 digital io power supply 0.
...the world's most energy friendly microcontrollers 2015-03-06 - efm32tg110fxx - d0013_rev1.40 46 www.silabs.com qfn24 pin# and name pin alternate functionality / description pin # pin name analog timers communication other 3 pc0 acmp0_ch0 dac0_out0alt #0/ opamp_out0alt tim0_cc1 #4 pcnt0_s0in #2 us0_tx #5 us1_tx #0 i2c0_sda #4 les_ch0 #0 prs_ch2 #0 4 pc1 acmp0_ch1 dac0_out0alt #1/ opamp_out0alt tim0_cc2 #4 pcnt0_s1in #2 us0_rx #5 us1_rx #0 i2c0_scl #4 les_ch1 #0 prs_ch3 #0 5 pb7 lfxtal_p tim1_cc0 #3 us0_tx #4 us1_clk #0 6 pb8 lfxtal_n tim1_cc1 #3 us0_rx #4 us1_cs #0 7 resetn reset input, active low. to apply an external reset source to this pin, it is required to only drive this pin low during reset, and let the internal pull-up ensure that reset is released. 8 pb11 dac0_out0 / opamp_out0 tim1_cc2 #3 letim0_out0 #1 9 avdd_2 analog power supply 2. 10 pb13 hfxtal_p us0_clk #4/5 leu0_tx #1 11 pb14 hfxtal_n us0_cs #4/5 leu0_rx #1 12 avdd_0 analog power supply 0. 13 pd6 adc0_ch6 dac0_p1 / opamp_p1 tim1_cc0 #4 letim0_out0 #0 pcnt0_s0in #3 us1_rx #2 i2c0_sda #1 les_altex0 #0 acmp0_o #2 14 pd7 adc0_ch7 dac0_n1 / opamp_n1 tim1_cc1 #4 letim0_out1 #0 pcnt0_s1in #3 us1_tx #2 i2c0_scl #1 cmu_clk0 #2 les_altex1 #0 acmp1_o #2 15 vdd_dreg power supply for on-chip voltage regulator. 16 decouple decouple output for on-chip voltage regulator. an external capacitance of size c decouple is required at this pin. 17 pc14 acmp1_ch6 dac0_out1alt #2/ opamp_out1alt tim1_cc1 #0 pcnt0_s1in #0 us0_cs #3 les_ch14 #0 18 pc15 acmp1_ch7 dac0_out1alt #3/ opamp_out1alt tim1_cc2 #0 us0_clk #3 les_ch15 #0 dbg_swo #1 19 pf0 tim0_cc0 #5 letim0_out0 #2 us1_clk #2 leu0_tx #3 i2c0_sda #5 dbg_swclk #0/1 boot_tx 20 pf1 tim0_cc1 #5 letim0_out1 #2 us1_cs #2 leu0_rx #3 i2c0_scl #5 dbg_swdio #0/1 gpio_em4wu3 boot_rx 21 pf2 tim0_cc2 #5 leu0_tx #4 acmp1_o #0 dbg_swo #0 gpio_em4wu4 22 iovdd_5 digital io power supply 5. 23 pe12 tim1_cc2 #1 us0_rx #3 us0_clk #0 i2c0_sda #6 cmu_clk1 #2 les_altex6 #0 24 pe13 us0_tx #3 us0_cs #0 i2c0_scl #6 les_altex7 #0 acmp0_o #0 gpio_em4wu5
...the world's most energy friendly microcontrollers 2015-03-06 - efm32tg110fxx - d0013_rev1.40 47 www.silabs.com 4.2 alternate functionality pinout a wide selection of alternate functionality is available for multiplexing to various pins. this is shown in table 4.2 (p. 47 ) . the table shows the name of the alternate functionality in the first column, followed by columns showing the possible location bitfield settings. note some functionality, such as analog interfaces, do not have alternate settings or a loca- tion bitfield. in these cases, the pinout is shown in the column corresponding to loca- tion 0. table 4.2. alternate functionality overview alternate location functionality 0 1 2 3 4 5 6 description acmp0_ch0 pc0 analog comparator acmp0, channel 0. acmp0_ch1 pc1 analog comparator acmp0, channel 1. acmp0_o pe13 pd6 analog comparator acmp0, digital output. acmp1_ch6 pc14 analog comparator acmp1, channel 6. acmp1_ch7 pc15 analog comparator acmp1, channel 7. acmp1_o pf2 pd7 analog comparator acmp1, digital output. adc0_ch6 pd6 analog to digital converter adc0, input channel number 6. adc0_ch7 pd7 analog to digital converter adc0, input channel number 7. boot_rx pf1 bootloader rx. boot_tx pf0 bootloader tx. cmu_clk0 pd7 clock management unit, clock output number 0. cmu_clk1 pe12 clock management unit, clock output number 1. dac0_n1 / opamp_n1 pd7 operational amplifier 1 external negative input. dac0_out0 / opamp_out0 pb11 digital to analog converter dac0_out0 / opamp output channel number 0. dac0_out0alt / opamp_out0alt pc0 pc1 digital to analog converter dac0_out0alt / opamp alternative output for channel 0. dac0_out1alt / opamp_out1alt pc14 pc15 digital to analog converter dac0_out1alt / opamp alternative output for channel 1. dac0_p1 / opamp_p1 pd6 operational amplifier 1 external positive input. dbg_swclk pf0 pf0 debug-interface serial wire clock input. note that this function is enabled to pin out of reset, and has a built-in pull down. dbg_swdio pf1 pf1 debug-interface serial wire data input / output. note that this function is enabled to pin out of reset, and has a built-in pull up. dbg_swo pf2 pc15 debug-interface serial wire viewer output. note that this function is not enabled after reset, and must be enabled by software to be used. gpio_em4wu0 pa0 pin can be used to wake the system up from em4 gpio_em4wu3 pf1 pin can be used to wake the system up from em4 gpio_em4wu4 pf2 pin can be used to wake the system up from em4 gpio_em4wu5 pe13 pin can be used to wake the system up from em4 hfxtal_n pb14 high frequency crystal negative pin. also used as external optional clock input pin.
...the world's most energy friendly microcontrollers 2015-03-06 - efm32tg110fxx - d0013_rev1.40 48 www.silabs.com alternate location functionality 0 1 2 3 4 5 6 description hfxtal_p pb13 high frequency crystal positive pin. i2c0_scl pd7 pc1 pf1 pe13 i2c0 serial clock line input / output. i2c0_sda pa0 pd6 pc0 pf0 pe12 i2c0 serial data input / output. les_altex0 pd6 lesense alternate exite output 0. les_altex1 pd7 lesense alternate exite output 1. les_altex6 pe12 lesense alternate exite output 6. les_altex7 pe13 lesense alternate exite output 7. les_ch0 pc0 lesense channel 0. les_ch1 pc1 lesense channel 1. les_ch14 pc14 lesense channel 14. les_ch15 pc15 lesense channel 15. letim0_out0 pd6 pb11 pf0 low energy timer letim0, output channel 0. letim0_out1 pd7 pf1 low energy timer letim0, output channel 1. leu0_rx pb14 pf1 pa0 leuart0 receive input. leu0_tx pb13 pf0 pf2 leuart0 transmit output. also used as receive input in half duplex communication. lfxtal_n pb8 low frequency crystal (typically 32.768 khz) negative pin. also used as an optional external clock input pin. lfxtal_p pb7 low frequency crystal (typically 32.768 khz) positive pin. pcnt0_s0in pc0 pd6 pulse counter pcnt0 input number 0. pcnt0_s1in pc14 pc1 pd7 pulse counter pcnt0 input number 1. prs_ch0 pa0 peripheral reflex system prs, channel 0. prs_ch2 pc0 peripheral reflex system prs, channel 2. prs_ch3 pc1 peripheral reflex system prs, channel 3. tim0_cc0 pa0 pa0 pa0 pf0 timer 0 capture compare input / output channel 0. tim0_cc1 pc0 pf1 timer 0 capture compare input / output channel 1. tim0_cc2 pc1 pf2 timer 0 capture compare input / output channel 2. tim1_cc0 pb7 pd6 timer 1 capture compare input / output channel 0. tim1_cc1 pc14 pb8 pd7 timer 1 capture compare input / output channel 1. tim1_cc2 pc15 pe12 pb11 timer 1 capture compare input / output channel 2. us0_clk pe12 pc15 pb13 pb13 usart0 clock input / output. us0_cs pe13 pc14 pb14 pb14 usart0 chip select input / output. us0_rx pe12 pb8 pc1 usart0 asynchronous receive. usart0 synchronous mode master input / slave output (miso). us0_tx pe13 pb7 pc0 usart0 asynchronous transmit.also used as receive input in half duplex communication. usart0 synchronous mode master output / slave input (mosi). us1_clk pb7 pf0 usart1 clock input / output. us1_cs pb8 pf1 usart1 chip select input / output. us1_rx pc1 pd6 usart1 asynchronous receive. usart1 synchronous mode master input / slave output (miso).
...the world's most energy friendly microcontrollers 2015-03-06 - efm32tg110fxx - d0013_rev1.40 49 www.silabs.com alternate location functionality 0 1 2 3 4 5 6 description us1_tx pc0 pd7 usart1 asynchronous transmit.also used as receive input in half duplex communication. usart1 synchronous mode master output / slave input (mosi). 4.3 gpio pinout overview the specific gpio pins available in efm32tg110 is shown in table 4.3 (p. 49 ) . each gpio port is organized as 16-bit ports indicated by letters a through f, and the individual pin on this port is indicated by a number from 15 down to 0. table 4.3. gpio pinout port pin 15 pin 14 pin 13 pin 12 pin 11 pin 10 pin 9 pin 8 pin 7 pin 6 pin 5 pin 4 pin 3 pin 2 pin 1 pin 0 port a - - - - - - - - - - - - - - - pa0 port b - pb14 pb13 - pb11 - - pb8 pb7 - - - - - - - port c pc15 pc14 - - - - - - - - - - - - pc1 pc0 port d - - - - - - - - pd7 pd6 - - - - - - port e - - pe13 pe12 - - - - - - - - - - - - port f - - - - - - - - - - - - - pf2 pf1 pf0 4.4 opamp pinout overview the specific opamp terminals available in efm32tg110 is shown in figure 4.2 (p. 49 ) . figure 4.2. opamp pinout - + opa0 - + opa2 - + opa1 out0alt out0 out2 out1alt out1 pd6 pd7 pb11 pc0 pc1 pc14 pc15
...the world's most energy friendly microcontrollers 2015-03-06 - efm32tg110fxx - d0013_rev1.40 50 www.silabs.com 4.5 qfn24 package figure 4.3. qfn24 note: 1. dimensioning & tolerancing confirm to asme y14.5m-1994. 2. all dimensions are in millimeters. angles are in degrees. 3. dimension 'b' applies to metallized terminal and is measured between 0.25 mm and 0.30 mm from the terminal tip. dimension l1 represents terminal full back from package edge up to 0.1 mm is acceptable. 4. coplanarity applies to the exposed heat slug as well as the terminal. 5. radius on terminal is optional table 4.4. qfn24 (dimensions in mm) symbol a a1 a3 b d e d2 e2 e l l1 aaa bbb ccc ddd eee min 0.80 0.00 0.25 3.50 3.50 0.35 0.00 nom 0.85 - 0.30 3.60 3.60 0.40 max 0.90 0.05 0.203 ref 0.35 5.00 bsc 5.00 bsc 3.70 3.70 0.65 bsc 0.45 0.10 0.10 0.10 0.10 0.05 0.08 the qfn24 package uses nickel-palladium-gold preplated leadframe. all efm32 packages are rohs compliant and free of bromine (br) and antimony (sb). for additional quality and environmental information, please see: http://www.silabs.com/support/quality/pages/default.aspx
...the world's most energy friendly microcontrollers 2015-03-06 - efm32tg110fxx - d0013_rev1.40 51 www.silabs.com 5 pcb layout and soldering 5.1 recommended pcb layout figure 5.1. qfn24 pcb land pattern e a d p1 p2 p3 p4 p5 p6 p7 p8 c b p9 f g table 5.1. qfn24 pcb land pattern dimensions (dimensions in mm) symbol dim. (mm) symbol pin number symbol pin number a 0.80 p1 1 p8 24 b 0.30 p2 6 p9 25 c 0.65 p3 7 - - d 5.00 p4 12 - - e 5.00 p5 13 - - f 3.60 p6 18 - - g 3.60 p7 19 - -
...the world's most energy friendly microcontrollers 2015-03-06 - efm32tg110fxx - d0013_rev1.40 52 www.silabs.com figure 5.2. qfn24 pcb solder mask e a d c b f g table 5.2. qfn24 pcb solder mask dimensions (dimensions in mm) symbol dim. (mm) symbol dim. (mm) a 0.92 e 5.00 b 0.42 f 3.72 c 0.65 g 3.72 d 5.00 - -
...the world's most energy friendly microcontrollers 2015-03-06 - efm32tg110fxx - d0013_rev1.40 53 www.silabs.com figure 5.3. qfn24 pcb stencil design e a d c b x y z table 5.3. qfn24 pcb stencil design dimensions (dimensions in mm) symbol dim. (mm) symbol dim. (mm) a 0.60 e 5.00 b 0.25 x 1.00 c 0.65 y 1.00 d 5.00 z 0.50 1. the drawings are not to scale. 2. all dimensions are in millimeters. 3. all drawings are subject to change without notice. 4. the pcb land pattern drawing is in compliance with ipc-7351b. 5. stencil thickness 0.125 mm. 6. for detailed pin-positioning, see figure 4.3 (p. 50 ) . 5.2 soldering information the latest ipc/jedec j-std-020 recommendations for pb-free reflow soldering should be followed. the packages have a moisture sensitivity level rating of 3, please see the latest ipc/jedec j-std-033 standard for msl description and level 3 bake conditions. place as many and as small as possible vias underneath each of the solder patches under the ground pad.
...the world's most energy friendly microcontrollers 2015-03-06 - efm32tg110fxx - d0013_rev1.40 54 www.silabs.com 6 chip marking, revision and errata 6.1 chip marking in the illustration below package fields and position are shown. figure 6.1. example chip marking (top view) 6.2 revision the revision of a chip can be determined from the "revision" field in figure 6.1 (p. 54 ) . 6.3 errata please see the errata document for efm32tg110 for description and resolution of device erratas. this document is available in simplicity studio and online at: http://www.silabs.com/support/pages/document-library.aspx?p=mcus--32-bit
...the world's most energy friendly microcontrollers 2015-03-06 - efm32tg110fxx - d0013_rev1.40 55 www.silabs.com 7 revision history 7.1 revision 1.40 march 6th, 2015 updated block diagram. updated energy modes current consumption. updated power management section. updated lfrco and hfrco sections. added auxhfrco to block diagram and electrical characteristics. corrected unit to khz on lfrco plots y-axis. updated adc section and added clarification on conditions for inl adc and dnl adc parameters. updated dac section and added clarification on conditions for inl dac and dnl dac parameters. updated opamp section. updated acmp section and the response time graph. updated vcmp section. updated package dimensions table. updated digital peripherals section. 7.2 revision 1.30 july 2nd, 2014 corrected single power supply voltage minimum value from 1.85v to 1.98v. updated current consumption. updated transition between energy modes. updated power management data. updated gpio data. updated lfxo, hfxo, hfrco and ulfrco data. updated lfrco and hfrco plots. updated acmp data. 7.3 revision 1.21 november 21st, 2013 updated figures. updated errata-link.
...the world's most energy friendly microcontrollers 2015-03-06 - efm32tg110fxx - d0013_rev1.40 56 www.silabs.com updated chip marking. added link to environmental and quality information. re-added missing dac-data. 7.4 revision 1.20 september 30th, 2013 added i2c characterization data. corrected gpio operating voltage from 1.8 v to 1.85 v. corrected the adc gain and offset measurement reference voltage from 2.25 to 2.5v. corrected the adc resolution from 12, 10 and 6 bit to 12, 8 and 6 bit. document changed status from "preliminary". updated environmental information. updated trademark, disclaimer and contact information. other minor corrections. 7.5 revision 1.10 june 28th, 2013 updated power requirements in the power management section. removed minimum load capacitance figure and table. added reference to application note. other minor corrections. 7.6 revision 1.00 september 11th, 2012 updated the hfrco 1 mhz band typical value to 1.2 mhz. updated the hfrco 7 mhz band typical value to 6.6 mhz. added gpio_em4wu3, gpio_em4wu4 and gpio_em4wu5 pins and removed gpio_em4wu1 in the alternate functionality overview table. other minor corrections. 7.7 revision 0.96 may 4th, 2012 corrected pcb footprint figures and tables. 7.8 revision 0.95 february 27th, 2012 corrected operating voltage from 1.8 v to 1.85 v.
...the world's most energy friendly microcontrollers 2015-03-06 - efm32tg110fxx - d0013_rev1.40 57 www.silabs.com added rising por level and corrected thermometer output gradient in electrical characteristics section. updated minimum load capacitance (c lfxol ) requirement for safe crystal startup. added gain error drift and offset error drift to adc table. added reference to errata document. 7.9 revision 0.92 july 22nd, 2011 updated current consumption numbers from latest device characterization data. updated opamp electrical characteristics. made adc plots render properly in adobe reader. 7.10 revision 0.91 february 4th, 2011 corrected max dac sampling rate. increased max storage temperature. added data for <150c and <70c on flash data retention. changed latch-up sensitivity test description. added io leakage current. added flash current consumption. updated hfrco data. updated lfrco data. added graph for adc absolute offset over temperature. added graph for adc temperature sensor readout. updated opamp electrical characteristics. 7.11 revision 0.90 december 1st, 2010 new peripherals added to pinout, including lesense and opamps. 7.12 revision 0.70 august 16th, 2010 added pinout. 7.13 revision 0.50 may 25th, 2010
...the world's most energy friendly microcontrollers 2015-03-06 - efm32tg110fxx - d0013_rev1.40 58 www.silabs.com block diagram update. 7.14 revision 0.40 march 26th, 2010 initial preliminary release.
...the world's most energy friendly microcontrollers 2015-03-06 - efm32tg110fxx - d0013_rev1.40 59 www.silabs.com a disclaimer and trademarks a.1 disclaimer silicon laboratories intends to provide customers with the latest, accurate, and in-depth documentation of all peripherals and modules available for system and software implementers using or intending to use the silicon laboratories products. characterization data, available modules and peripherals, memory sizes and memory addresses refer to each specific device, and "typical" parameters provided can and do vary in different applications. application examples described herein are for illustrative purposes only. silicon laboratories reserves the right to make changes without further notice and limitation to product information, specifications, and descriptions herein, and does not give warranties as to the accuracy or completeness of the included information. silicon laboratories shall have no liability for the conse- quences of use of the information supplied herein. this document does not imply or express copyright licenses granted hereunder to design or fabricate any integrated circuits. the products must not be used within any life support system without the specific written consent of silicon laboratories. a "life support system" is any product or system intended to support or sustain life and/or health, which, if it fails, can be reasonably expected to result in significant personal injury or death. silicon laboratories products are generally not intended for military applications. silicon laboratories products shall under no circumstances be used in weapons of mass destruction including (but not limited to) nuclear, biological or chemical weapons, or missiles capable of delivering such weapons. a.2 trademark information silicon laboratories inc., silicon laboratories, silicon labs, silabs and the silicon labs logo, cmems?, efm, efm32, efr, energy micro, energy micro logo and combinations thereof, "the world?s most ener- gy friendly microcontrollers", ember?, ezlink?, ezmac?, ezradio?, ezradiopro?, dspll?, iso- modem?, precision32?, proslic?, siphy?, usbxpress? and others are trademarks or registered trademarks of silicon laboratories inc. arm, cortex, cortex-m3 and thumb are trademarks or reg- istered trademarks of arm holdings. keil is a registered trademark of arm limited. all other products or brand names mentioned herein are trademarks of their respective holders.
...the world's most energy friendly microcontrollers 2015-03-06 - efm32tg110fxx - d0013_rev1.40 60 www.silabs.com b contact information silicon laboratories inc. 400 west cesar chavez austin, tx 78701 please visit the silicon labs technical support web page: http://www.silabs.com/support/pages/contacttechnicalsupport.aspx and register to submit a technical support request.
...the world's most energy friendly microcontrollers 2015-03-06 - efm32tg110fxx - d0013_rev1.40 61 www.silabs.com table of contents 1. ordering information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2 2. system summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3 2.1. system introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3 2.2. configuration summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7 2.3. memory map . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7 3. electrical characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9 3.1. test conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9 3.2. absolute maximum ratings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9 3.3. general operating conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9 3.4. current consumption . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10 3.5. transition between energy modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12 3.6. power management . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12 3.7. flash . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13 3.8. general purpose input output . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13 3.9. oscillators . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21 3.10. analog digital converter (adc) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26 3.11. digital analog converter (dac) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 3.12. operational amplifier (opamp) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 3.13. analog comparator (acmp) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40 3.14. voltage comparator (vcmp) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42 3.15. i2c . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42 3.16. digital peripherals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43 4. pinout and package . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45 4.1. pinout . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45 4.2. alternate functionality pinout . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47 4.3. gpio pinout overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49 4.4. opamp pinout overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49 4.5. qfn24 package . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50 5. pcb layout and soldering . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51 5.1. recommended pcb layout . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51 5.2. soldering information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53 6. chip marking, revision and errata . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54 6.1. chip marking . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54 6.2. revision . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54 6.3. errata . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54 7. revision history . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55 7.1. revision 1.40 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55 7.2. revision 1.30 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55 7.3. revision 1.21 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55 7.4. revision 1.20 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56 7.5. revision 1.10 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56 7.6. revision 1.00 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56 7.7. revision 0.96 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56 7.8. revision 0.95 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56 7.9. revision 0.92 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57 7.10. revision 0.91 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57 7.11. revision 0.90 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57 7.12. revision 0.70 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57 7.13. revision 0.50 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57 7.14. revision 0.40 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58 a. disclaimer and trademarks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59 a.1. disclaimer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59 a.2. trademark information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59 b. contact information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60 b.1. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60
...the world's most energy friendly microcontrollers 2015-03-06 - efm32tg110fxx - d0013_rev1.40 62 www.silabs.com list of figures 2.1. block diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3 2.2. efm32tg110 memory map with largest ram and flash sizes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8 3.1. em2 current consumption. rtc prescaled to 1khz, 32.768 khz lfrco. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11 3.2. em3 current consumption. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11 3.3. em4 current consumption. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11 3.4. typical low-level output current, 2v supply voltage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15 3.5. typical high-level output current, 2v supply voltage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16 3.6. typical low-level output current, 3v supply voltage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17 3.7. typical high-level output current, 3v supply voltage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18 3.8. typical low-level output current, 3.8v supply voltage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19 3.9. typical high-level output current, 3.8v supply voltage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20 3.10. calibrated lfrco frequency vs temperature and supply voltage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22 3.11. calibrated hfrco 1 mhz band frequency vs supply voltage and temperature . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23 3.12. calibrated hfrco 7 mhz band frequency vs supply voltage and temperature . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23 3.13. calibrated hfrco 11 mhz band frequency vs supply voltage and temperature . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24 3.14. calibrated hfrco 14 mhz band frequency vs supply voltage and temperature . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24 3.15. calibrated hfrco 21 mhz band frequency vs supply voltage and temperature . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24 3.16. calibrated hfrco 28 mhz band frequency vs supply voltage and temperature . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25 3.17. integral non-linearity (inl) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 3.18. differential non-linearity (dnl) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 3.19. adc frequency spectrum, vdd = 3v, temp = 25c . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 3.20. adc integral linearity error vs code, vdd = 3v, temp = 25c . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 3.21. adc differential linearity error vs code, vdd = 3v, temp = 25c . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 3.22. adc absolute offset, common mode = vdd /2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 3.23. adc dynamic performance vs temperature for all adc references, vdd = 3v . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 3.24. opamp common mode rejection ratio . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37 3.25. opamp positive power supply rejection ratio . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38 3.26. opamp negative power supply rejection ratio . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38 3.27. opamp voltage noise spectral density (unity gain) v out =1v . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38 3.28. opamp voltage noise spectral density (non-unity gain) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39 3.29. acmp characteristics, vdd = 3v, temp = 25c, fullbias = 0, halfbias = 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41 4.1. efm32tg110 pinout (top view, not to scale) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45 4.2. opamp pinout . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49 4.3. qfn24 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50 5.1. qfn24 pcb land pattern . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51 5.2. qfn24 pcb solder mask . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52 5.3. qfn24 pcb stencil design . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53 6.1. example chip marking (top view) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54
...the world's most energy friendly microcontrollers 2015-03-06 - efm32tg110fxx - d0013_rev1.40 63 www.silabs.com list of tables 1.1. ordering information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2 2.1. configuration summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7 3.1. absolute maximum ratings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9 3.2. general operating conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9 3.3. current consumption . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10 3.4. energy modes transitions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12 3.5. power management . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12 3.6. flash . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13 3.7. gpio . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13 3.8. lfxo . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21 3.9. hfxo . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21 3.10. lfrco . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22 3.11. hfrco . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22 3.12. auxhfrco . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25 3.13. ulfrco . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25 3.14. adc . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26 3.15. dac . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 3.16. opamp . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 3.17. acmp . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40 3.18. vcmp . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42 3.19. i2c standard-mode (sm) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42 3.20. i2c fast-mode (fm) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43 3.21. i2c fast-mode plus (fm+) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43 3.22. digital peripherals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43 4.1. device pinout . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45 4.2. alternate functionality overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47 4.3. gpio pinout . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49 4.4. qfn24 (dimensions in mm) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50 5.1. qfn24 pcb land pattern dimensions (dimensions in mm) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51 5.2. qfn24 pcb solder mask dimensions (dimensions in mm) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52 5.3. qfn24 pcb stencil design dimensions (dimensions in mm) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53
...the world's most energy friendly microcontrollers 2015-03-06 - efm32tg110fxx - d0013_rev1.40 64 www.silabs.com list of equations 3.1. total acmp active current . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40 3.2. vcmp trigger level as a function of level setting . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42


▲Up To Search▲   

 
Price & Availability of EFM32TG110F32-QFN24

All Rights Reserved © IC-ON-LINE 2003 - 2022  

[Add Bookmark] [Contact Us] [Link exchange] [Privacy policy]
Mirror Sites :  [www.datasheet.hk]   [www.maxim4u.com]  [www.ic-on-line.cn] [www.ic-on-line.com] [www.ic-on-line.net] [www.alldatasheet.com.cn] [www.gdcy.com]  [www.gdcy.net]


 . . . . .
  We use cookies to deliver the best possible web experience and assist with our advertising efforts. By continuing to use this site, you consent to the use of cookies. For more information on cookies, please take a look at our Privacy Policy. X